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Abstract

Sdif-assembly, the process by which objects au-
tonomously come together to form complex structures,
is omnipresent in the physical world. A systematic study of
self-assembly as a mathematical process has been initiated.
The individual components are modelled as square tiles
on the infinite two-dimensional plane. Each side of a tile
is covered by a specific “glue’, and two adjacent tiles
will stick iff they have matching glues on their abutting
edges. Tiles that stick to each other may form various
two-dimensional “ structures’ such as squares, rectangles,
or may cover the entire plane. In this paper we focus on a
special type of structure, called ribbon: A non-self-crossing
sequence of tiles on the plane, in which successive tiles are
adjacent along an edge, and abutting edges of consecutive
tiles have matching glues. We prove that it is undecidable
whether an arbitrary finite set of tiles with glues (infinite
supply of each tile type available) can be used to assemble
an infinite ribbon. The proof is based on a construction,
due to Robinson, of a special set of tiles that allow only
aperiodic tilings of the plane. This construction is used
to create a special set of directed tiles (tiles with arrows
painted on the top) with the “ strong plane-filling property”
- a variation of the “plane-filling property” previously
defined by J. Kari. A construction of “ sandwich” tilesis
then used in conjunction with this special tile set, to reduce
the well-known undecidabl e Tiling Problem to the problem
of the existence of an infinite directed Zipper (a special
kind of ribbon). A “ motif” construction is then introduced
that allows one tile system to simulate another by using
geometry to represent glues. Using motifs, the infinite
directed zipper problem is reduced to the infinite ribbon
problem, proving the latter undecidable.

Theresult settles an open problemformerly known asthe
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“unlimited infinite snake problem” . Moreover, an immedi-
ate consequence is the undecidability of the existence of ar-
bitrarily large structures self-assembled using tiles from a
giventile set.

1 Introduction

Self-assembly, the process by which objects au-
tonomously come together to form complex structures, is
omnipresent in the physical world. Atoms bind to each
other by chemical bondsto form molecules, molecules may
form crystals or macromolecules, cells interact to form
biological organisms. Recently it has been suggested that
complex self-assembly processes will ultimately be used in
circuit fabrication, nano-robotics, DNA computation and
amorphous computing. Indeed, in electronics, engineering,
medicine, materia science, manufacturing and other disci-
plines, there is a continuous drive toward miniaturization.
Unfortunately, current “top-down” techniques such as
lithography may not be capable of efficiently creating
structures with features the size of molecules or atoms.
Self-assembly provides a “bottom-up” approach by which
such fine structures might be created.

Experimenta research on self-assembly includessimula-
tion of one-dimensional cellular automata by using macro-
scopic plagtic tiles that assemble a an oil/water inter-
face [25], studies of self-directed growth of hybrid organic
molecules on asilicon substrate[18], self-assembly of regu-
lar lipid hollow icosahedra [8], self-assembly of patterns of
lead on a copper surface as templates for fabricating nanos-
tructures [22], formation of electrical networks by self-
assembly of small plastic and metal objects[10], [33], sef-
assembly of molecul ar machines[9], and the construction by
self-assembly of the world's first molecular-thickness tran-



sistor [28].

Investigationsinto DNA Computing [2] and amorphous
computing[1] have pointed out astrong connection between
self-assembly and computation. While[30], [21], [23], [32]
have shown the potential of DNA self-assembly for com-
putation, [31] has experimentally demonstrated the self-
assembly of periodic two-dimensional arrays from DNA
“tiles’, inwhich “binding” isregulated by the “sticky” ends
of the DNA tiles. Moreover [19] has demonstrated the ex-
ecution of logical operations (cumulative XOR) by self-
assembly of DNA triple cross-over molecules.

A systematic study of self-assembly as a computational
process has been initiated in [3]. The individua compo-
nentsare therein modelled as squaretileson theinfinitetwo-
dimensional plane. The tiles cannot be rotated. Each side
of atileis covered by a specific “glue” and two adjacent
tiles will gtick iff they have matching glues on their abut-
ting edges. As such, tiles have been previoudy studied in
the context of classic questions about tilings of the plane
[29]. The Tiling Problem, for example (proved undecid-
ablein [7], [24]), asks whether a given set of tiles (supply
of each tiletype unlimited) can be used to correctly tilethe
entire plane. However, self-assembly of tilesinto required
shapes poses new types of questions. What is the minimal
number of tiles required for the self-assembly of a desired
shape and no other objects [5]? What isthe running time of
such asdlf-assembly [5], [6]? Do theresultsstill hold if one
generalizes the model by making the “sticking” reversible,
or by defining different bond strengths and requiring more
than one bond for sticking to occur [27], [6], [4], [5]? Do
reversible self-assemblies achieve equilibrium[4]? What is
the optimal initial concentration of tiletypesthat guarantees
the fastest assembly of arequired shape [5]?

One of the interesting problems of self-assembly is
whether or not a given set of tiles alows uncontrollable
growth, that is, whether arbitrarily large structures can be
produced. It turnsout that thisquestion isequival ent to ask-
ing whether or not, given a set of tiles, there exists an in-
finite ribbon that can be formed with tiles from thisset. A
ribbon is a non-sdlf-crossing sequence of tileson the plane,
in which successive tiles are adjacent aong an edge, and
abutting edges of consecutive tiles have matching glues. If
agiven “seed” tileis specified, the problem of existence of
an infinite ribbon starting at that tile has been proved un-
decidable [12], [11], [13]. However, when no such seed is
specified, existing proof techniquesfailed to produce an an-
swer and the problem was declared open in [13]. The un-
seeded problem is even more relevant given that, in physi-
cal simulationsof self-assembly, the growth mechanism was
deemed incompatible with computations that use a chosen
input [25]. Here we prove that the unseeded problem is
also undecidable. Thisresult settlesthe decade-old problem
known hitherto as the “unlimited infinite snake problem”,

[13].

The paper is organized as follows. Section 2 introduces
the notions of tile, glue, tile system, sticking, ribbon, zip-
per, valid tiling of the plane, directed tiles. In particular, a
Zipper isaribbon with the additional requirement that even
non-consecutive tiles that touch must have matching glues
at their abutting edges.

Section 3 starts with defining a directed tile system with
the strong plane-filling property: in such a system, any in-
finite directed zipper is forced to follow a specific plane-
filling self-similar path and, moreover, an infinite directed
Zipper is aways guaranteed to exists. The construction of
a directed tile system with the above property uses a 3x3
block-construction starting from directed tiles defined in
[16], [15] which, inturn, resembl e tilesdevised by Robinson
in[24] to only produce aperiodic tilings of the plane. These
tiles are augmented in [15], [16] with directions that force
any directed tiled path to form a self-similar plane-filling
Hilbert curve that recursively fills arbitrarily large squares
by filling each of their quadrants. The original construction
used the condition that no glue mismatch be present in the
3 x 3 neighbourhood of any tile onthe path, toforce the path
tofollow thedesired curve. Here, the additional 3 x 3 block
construction is needed to ensure that the weaker condition
of no glue mismatch between any two tiles on the directed
tiled path is enough to force its course.

Section 3 then proves the undecidability of the existence
of aninfinitedirected zipper by reducing the Tiling Problem
to it. The reduction is based on a construction of sandwich
tiles, that have directed tiles from the directed tile system
with the strong plane-filling property on top and undirected
tilesfrom agiven tile system on the bottom.

The next result of the section proves the undecidability
of the existence of an infinite ribbon by reducing the un-
decidable infinite directed-zipper problem to it. The proof
uses a “ribbon-motif” construction that simulates each di-
rected zipper tile by aribbon of undirected tiles following
its contours, and uses geometry (bump and dents) to simu-
late zipper-tile glues.

Section 4 and Section 5 point to the implications of the
undecidability of existence of infinite ribbons for the prob-
lem of self-assembly of arbitrarily large supertiles, and sum-
marize our results.

2 Notation and definitions

A tileis an oriented unit square. The north, east, south
and west edges of the tile are each labelled with a symbol
caled a glue from afinite alphabet X. Tiles can be placed
on the plane but not rotated. The positionsof thetileson the
plane are indexed by Z?, the set of pairs of integers.

Formally, atilet isaquadruplet = (tn,tg,ts,tw) €
X* where X isafiniteset. The componentsty,tg,ts, tw



will be called the glues on the north, east, south, and west
edges of the tile, respectively. A tile system 7' is a finite
subset of X*. For al tilest = (tn,tg,ts, tw) and ¢/ =
(thy, g, s, thy ), t sticks on the north to ¢/ iff ty = 4.
Sticking on the east, south, and west is defined similarly.

The directionsD = {N,E,S, W} are functions from
Z*t0Z*% N(z,y) = (z,y+ 1), E(z,y) = (z + 1,y),
S(z,y) = (z,y— 1), W(z,y) = (z — 1,y). We say that
the positions (z, y) and (2', y') are adjacent iff (¢/,y') €
{N(z,y), E(z,y),S(z,y), W(z,y)}. In addition, (z,y)
abuts (z', ¢') on the north iff (', ¢') = N(=»,y), and sSimi-
larly for the other directions.

Given atile system 7', a T-tiling of the plane is a total
function f : Z2 — T. Thetiling f isvalid at position
(z,y) iff f(x,y) stickson thenorthto f(N(z,y)), f(=,y)
stickson theeast to f(E(z,y)), f(x,y) stickson the south
to f(S(z,y)), and f(z, y) sticksonthewest to f(W (z, y)).
Thatistosay, fisvalidat (=, y) iff thetileat position (=, y)
gticks on the appropriate sides to al thetiles that are at po-
sitions adjacent to it. Thetilingisvalidiff itisvalid at ev-
ery position (z,y) € Z?. The well-known Tiling Problem
posed by Wang asks: Given atile system 7', does there ex-
istsavalid T-tiling of the plane? The Tiling Problem has
been first proven undecidable by Berger [7], and the result
improved by Robinson [24]. One can generalize the notion
of T-tiling of the entire plane by defining a partial 7-tiling
asapartial functiong : Z? — T. A partia tiling g isvalid
onaregion R C dom(g) iff, foral (z1,y1), (z2,y2) € R,if
(21, y1) abuts (z2, y2) on the north (east, south, west), then
g(x1,y1) sticksto g(x2, y2) onthenorth (east, south, west).
The partial tiling ¢ iscaled valid iff it isvalid on the entire
dom(g).

A pathisafunction P : I — Z? where I is aset of
consecutiveintegersand (i, i + 1 € I), P(¢) and P(i + 1)
are adjacent. That is, apath isa sequence of adjacent posi-
tionsonthe plane. For all i € I, wedenote P (i) as (z;, y;).
We say that (z, y) ison P iff (x,y) € range(P). For dl tile
systems 7', aT-tiled pathisapair ( P, ») where P isa pah
and r isafunctionr : range(P) — T.

A T-tiled path ( P, r) isaT-ribbon iff

(a) Pisone-to-oneand

(b) V(Z, 14 1) S dom(P), if (l‘H_l, yi+1) abuts (l‘i, yi)
on the north (south, east, west) then r(#z;41, yi4+1) sticksto
(x5, y;) onthe north (south, east, west).

Informally, atiled path isaribboniff it does not crossit-
self and the glue betweentil esat consecutive positionsalong
the path match.

A T-ribbon (P, r) isaT-zipper iff for al (z,y), («',y)
on P if («',y') abuts (z, y) on the north (south, east, west)
then r(2',y') sticks to r(xz,y) on the north (south, east,
west). Note that the notion of a zipper is more restrictive
than the notion of aribbonin that a zipper requires all of its
tiles (consecutive or not) in adjacent positionsto stick.

A directed tile systemisa pair (7', d) where T" is atile
syssemandd : T — {N, E, S, W} isafunction from the
tilesystem to the direction functions. A directed tile system
can be thought of as atile system in which each tile has an
arrow painted on it pointing north, east, south, or west.

A (T, d)-directed tiled pathisapair (P, ), where (P, r)
isa7-tiled pathand V(i, i + 1 € dom(P))[(zi41, Yi+1) =
d(r(z;, v:))(zi,y:)]. A directed tiled path isatiled path in
which each tilepointsto itssuccessor onthepath. If (P, r) is
a(T, d)-directed tiled path and ( P, ) isaT'-ribbon (zipper)
then (P, r) isa(T, d)-directed ribbon (zipper).

A path, (directed) tiled path, (directed) ribbon, (directed)
Zipper isfinite, semi-infinite, infinite, iff the domain of the
associated path isfinite, has aleast or greatest el ement and
isinfinite, or isZ respectively.

3 Undecidability of existence of infinite rib-
bons

To prove the undecidability of existence of infinite rib-
bons, we shall first prove the undecidability of existence of
infinitedirected zippers. Afterwards, a“ribbon-motif” con-
struction will be employed to prove the result for ribbons:
the construction simulates a directed zipper by a ribbon-
motif of smaller tiles that goes around the contours of the
Zipper tiles, and uses geometry to simulate zi pper-tileglues.

In order to prove the undecidability of existence of infi-
nite directed zippers, we shall use the undecidability of the
Tiling Problem in conjunction with a sandwich construction
that makes use of the existence of adirected tile system with
the so-called strong plane-filling property.

Definition 3.1 A directed tile system (7', d) has the strong
plane-filling property iff:
(8) There exists an infinite (7, d)-directed zipper and
(b) For all infinite (T,d)-directed zippers (P,r),
Vn3(z,y) such that (+ + ¢y + j) is on P for
i=0,1,2,...,nandj =0,1,2,...,n.

Definition 3.1 states that in a directed tile system with
the strong plane-filling property any infinite directed zip-
per is forced to be planefilling (by filling arbitrarily large
squares) and, moreover, that such an infinite directed zip-
per always exists. An important element of our subsequent
proofswill be Theorem 3.1, namely the construction of a di-
rected tile system that satisfies the strong plane-filling prop-
erty of Definition 3.1. In fact, our directed tiles satisfy an
even stronger requirement than (b): any infinite directed
tiled path is either planefilling or it has a glue mismatch
between two of itstiles. In particular, using our tiles, an
infinite directed tiled path may not even form aloop with-
out encountering a glue mismatch along the way. Conse-
quently, every non-plane-filling infinite directed tiled path



must necessarily contain two neighbouring tileswith a glue
mismatch. The constructed tiles satisfy therefore a stronger
version of Definition 3.1, satisfying thusa stronger property
than the origina plane-filling property defined in [15, 16].

Intheorigina version, any infinitedirected tiled path was
forced to be plane-filling unless there was a mismatch of
gluesinside the 3 x 3 neighbourhood of some tile of the
path. In [16] directed tiles with this weaker plane-filling
property were explicitely constructed by augmenting Robin-
son’saperiodictiles[24] withdirections. With thesetiles, all
directed tiled paths consisting of tileswithout errorsin their
3 x 3 neighbourhoodformed self-similar plane-filling curves
of thekind used by Hilbert [14] to show that the unit square
is a continuousimage of the unit segment. The constructed
tilesfilled arbitrarily large squares recursively, by first fill-
ing the individual quadrants of a square. The process was
guided by the direction associated to each tile, which forced
the construction to proceed along the self-similar Hilbert
curvethat traversed each quadrant of asquare and linked the
quadrants to each other.

In the present application we need the stronger variant
of the plane-filling property introduced in this paper. In
our case theinfinite directed tiled path must be forced to be
plane-filling even under the weak assumption that thereis
no glue mismatch between any two tiles belonging to it. It
turnsout that such a directed tile system is obtained by tak-
ing 3 x 3 blocksof thetilesin[16]. For thisparticular set of
tiles, our 3 x 3 block-construction ensures that the weak re-
quirement of absence of glue mismatches between any two
tiles belonging to the directed tiled path is sufficient to de-
termine its uniqueness. Namely, we can prove that the con-
structed directed tile system has the property that, starting
withany arbitrary tile, theonly way to build aninfiniteerror-
freedirected zipper isby forming aHilbert curve that covers
arbitrarily large squares.

The exact construction is rather complex and is not in-
cluded here. We have;

Theorem 3.1 There exists a directed tile system (7p, dy)
with the strong plane-filling property.

We shall now use Theorem 3.1 to prove the undecidabil -
ity of the existence of an infinite directed zipper.

Theorem 3.2 Theset {(T, d)|(T, d) isadirected tilesystem
and there exists an infinite (7', d)-directed zipper } isunde-
cidable.

Proof. Reduce the undecidable Tiling Problem to our prob-
lem.

By Theorem 3.1 there exists a directed tile system
(Ty, do) with the strong plane-filling property.

Let 7} be atile system. Consider the following “sand-
wich tiles’, each consisting of atile from 75 placed on top

/

Figure 1. A sandwich tile o(a, b) consists of a
directed tile « € 1, placed on top of atile b €
Ty. The direction of o(a, b) is d(o(a, b)) = do(a),
the direction of its top tile.

of atilefrom 7;. That is, create a new directed tile system
(T, d) of sandwich tilessuchthat 7' = {o(a, b)|a € Ty and
b € T\} wherefor all a = (ay,ag,as,aw) € Tp and
b = (by,bg,bs,bw) € Ty, the sandwich tileo(a,b) =
((aN, bN), (ClE, bE), (aS, bS), (aw, bw)) and the direction
of thesandwich tileisd(o(a, b)) = dy(a) (see Figure 1).

Hence, a sandwich tile o(a, b) sticks on the north (east,
south, west) to o (a’, b') iff a stickson the north (east, south,
west) to «’ and b sticks on the north (east, south, west) to .

Wewill show now that thereexistsavalid 77 -tiling of the
planeiff there exists an infinite (7', d)-directed zipper.

“=" Assume that there exists a valid 77 -tiling of the
plane f : Z* — T}. Consider an infinite (T, d)-directed
zipper (P, r) (such exists, since (7;,dy) has the strong
plane-filling property). Consider the 7'-tiled path (P, ¢) of
sandwich tiles such that, for dl (z,y) on P, ¢(z,y) =
o(r(x,y), f(x,y)). Informally, the directed tiled path of
sandwich tiles consists of theinfinite (7}, dy)-directed zip-
per on itstop, and the corresponding partia valid 7} -tiling
flrangep) ON the bottom. Itisclear that in fact (P, ¢) isan
infinite (7', d)-directed zipper of sandwich tiles.

“<«<=" Assume that there exists an infinite (T, d)-directed
zipper (P, q) of sandwich tiles. Then, let (P, r) be its top
layer, i.e, for al (z,y) on P, r(z,y) = aiff ¢(z,y) =
o(a,b) for someb € 1. Then clearly, (P,r) isan in-
finite (7u, dy)-directed zipper. Hence, as (Ty, dy) has the
strong plane-filling property, P contains “arbitrarily large
squares’: Vn3i(x,y) such that (» + ¢,y + j) ison P for
i=0,1,2,...,nandj =0,1,2,...,n. Let (P, z) bethe
bottom layer of (P, ¢), i.e. the T;-tiled path such that for
al (z,y)on P, z(z,y) = biff g(x,y) = o(a,b). Then
clearly, (P, z) isin fact an infinite T, -zipper. It followsthat
range(P) = dom(z) contains arbitrarily large squares and
moreover, for al n, z : range(P) — T isapartia tiling
valid on a square of size n. It now follows from the Konig
infinity lemma [17] that there exists avalid 7 -tiling of the
plane.0
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Figure 2. A ribbon motif with input tile on the
west and output tile on the north.

Having proved the undecidability of existence of an infi-
nite directed zipper, we shall use thisresult to show that the
existence of an infiniteribbon is also undecidable.

Theorem 3.3 Theset {T'|T isatile system and there exists
an infinite 7-ribbon } is undecidable.

Proof. Reduce the set of Theorem 3.2 to this set.

Given a directed tile system (T, d), we will construct
atile system 7" such that there exists an infinite (7, d)-
directed zipper iff there exists an infinite 7”-ribbon. Re-
cal that a zipper differs from a ribbon in that in a ribbon
only consecutive tiles are required to have matching glues
on abutting edges, while on a zipper even non-consecutive
neighbouring tiles have to have matching glues on their
abutting edges.

The congtructionis asfollows. For each directed tilet &
T, construct three 7”-motifs. A motif is afinite 7’-ribbon
(P, r) of special form. We construct these ribbon motifs as
follows (see Figure 2).

Each motif isessentially atiled path that outlinesthe con-
tours of asquare. There are dents and bumps on the north,
east, south and west sides of the motif. In addition, if (P, r)
isamotif, then the first position on P is midway along one
side of the motif. This sideis caled the input side of the
motif and thetile at thefirst positionis called the input tile
of the motif. The last positionon P ismidway aong aside
of the motif different than theinput side. Thissideiscalled
the output side of the motif and thetile at the last positionis
caled the output tile of the motif.

[ 1
T
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L
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| |
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Figure 3. The two remaining variant motifs
corresponding to a directed zipper-tile with
direction north (the first one is depicted in
Figure 2). The bumps and dents are omitted
from the variant motifs for clarity.



Bump

Dent

Figure 4. The bump-and-dent pair that simu-
late a glue. Each glue is assigned a unique
position on the side of a motif. If the glues on
two directed zipper tiles situated at adjacent
positions match, then the bump on the first
motif will be placed exactly at the necessarry
position to fit in the dent of the second motif.

Given adirected tilet € ", we construct the three possi-
ble motifswith output side d(t). We call these three motifs
the“variants’ of ¢ (see Figure 3). On each variant, we put a
bump on the east (south) side, to encode the glue on the east
(south) sideof ¢. We also put adent on thewest (north) side,
to encode the glue on the west (north) side of ¢. The dents
and bumps are designed so that if, for example, ¢; stickson
the north to ¢5, then the dents on the north of ¢; variant mo-
tifsfit thebumpsonthesouth of ¢, variants(see Figure4). If
however, ¢; does not stick on the north to ¢-, then the north
sidesof ¢, variant motifswill overlap thebumpsonthe south
of ¢, variants. Since overlaps are not allowed in ribbons, if
t, does not stick on the northto ¢», no 7"-ribbon can have a
t» variant motif directly north of a¢; variant motif.

The glueson tilesin T’ are chosen so that each tile can
occur in exactly one variant motif, and in each variant mo-
tif it occurs exactly once. To thisaim, the two edges of each
ribbontileconnecting it with the preceding respectively suc-
ceeding tile on a variant motif are labelled so that thisis
the only sticking that can form aong those edges. The only
exception to thisrule are the input (output) tiles of motifs,
which havethe edges connecting them to the preceding (suc-
ceeding) tileslabelled differently, as detailed bel ow.

So far, the bumps and dents were used to simulate the
glues of zipper-tiles. We now simulate the direction of
a zipper-tile by incorporating it in the glues of the input
and output tiles of its variant motifs. We namely use four
new glues, West-to-East, East-to-West, North-to-South and
South-to-North as follows. If the direction of a directed
zipper-tilet; isnorth,i.e. d(t;) = N, then:

(a) the output ribbon-tilesof al threevariant motifsof ¢,
will have their north edge labelled South-to-North, and

(b) the input tile of the variant motif of ¢; with a west
(east, south) input side will have its west (east, south) edge
labelled West-to-East (East-to-West, South-to-North).

We label in a similar way the appropriate edges of the
input and output tiles of other motifs, namely those edges
that are meant to connect the motifsto each other. Thisla-
belling ensures that the variant motifs will be connected to
each other inthe proper order dictated by thedirection of the
originating directed zipper-tiles.

Lastly, we want to ensure that only motifs of the kind de-
scribed above can form, and that motifs can connect to each
other only through their input and output tiles. To thisaim,
we have two new different “null” glues: null(1) and null(2).
We label, for al the above constructed ribbon tiles, the so-
far-unlabelled north and west edges with null(1) and the un-
labelled east and south edges with null(2). Because null(1)
only matches null(1), and null(1) is only used on the west
and north edges, the edges of tiles |abelled with these glues
will not stick to any other tilesalong those edges. The same
istrue for null(2). These “non-stick” glues ensure that the
ribbon will only follow the intended motif and will not fill
itin, or stick to anything outside it, except at the input and
output tiles.

To summarize, given the directed tile system (7, d) we
can construct thetile system 7" consisting of theribbontiles
used in all variant motifsof tilesin 7, as described above.

Assumethat thereexistsaninfinitedirected (7', d)-zipper
(P,r). One can easily construct an infinite 7”-ribbon
(P’,r"). The idea is that, for each position (z;, ;) on
P thetile r(z;,y;) is replaced by one of its variant mo-
tifs. The variant chosen is one with input side opposite
d(r(zi-1,¥i-1))-

Conversdly, assume that there exists an infinite 7”-
ribbon, (P’, ). Itis clear from our choice of ribbon tiles
and gluesthat (P’, ) must consist of an infinite sequence
of motifs. Hence wecan construct aninfinite(7", d)-directed
Zipper by replacing each motif withthetilet of whichitisa
variant. O

Theorem 3.3 proves the undecidability of existence of an
infinite ribbon. This settles the open problem [13], stating:
“Problem 4.1. Given atiling system 7', is there an infinite
T-snakewithintheinfinitegrid G = Z x Z7

Intheterminology of [13], atiling system 7" isexactly as
defined in Section 2, afinite set of tiles, i.e. of squareswith
coloured edges that cannot be rotated and with infinitely
many copies of each tile available; The grid GG is the inte-
ger grid of positionsin the plane; An infinite 7'-snake is a
sequence of tiles on the plane in which successive tiles are
adjacent aong an edge and touching edges have the same
colour, i.e, infinite 7-snakes are (possibly self-crossing) 2-
way infiniteribbonswhere identical tiles must be present at
thecrossing sites. Ingeneral, an infinitesnake problemasks,
given atiling system 7", and some portion P of the plane,
whether thereisan infinite 7'-snake that lies entirely within
P. [13] proves that, given T and a strip of widthk € N,
the existence of an infinite 7'-snake that lies entirely within



the strip is decidable. Given atile system 7", and a specific
tilety € T, the problem of whether there exists an infinite
T-snakethat containst, isproved undecidablein [13] using
methods in [12] (the case of a 1-way infinite snake starting
at t, was proven undecidable in [11]). If the special “seed”
tileisnot specified, likein Problem 4.1, [ 13] conjecturesthe
problem undecidable but states that “[...] it seems that this
would be difficult to prove. We have not been ableto adjust
the proof techniques of other undecidability results for this
purpose’.

Theorem 3.3, by showing the undecidability of existence
of infinite non-self-crossing snakes, proves Problem 4.1 un-
decidable.

4 Undecidability of self-assembly of arbitrar-
ily large supertiles

Let us return to the discussion of self-assembly. Super-
tilesare constructed by an incremental process starting from
asingletile and proceeding by addition of single tiles that
“stick” to the hitherto built structure. The problem we are
addressing iswhether or not, given atile system, an infinite
supertile can self-assemble with tiles from that system. To
formalize our notions,

Definition 4.1 A shapeis a function f : I — Z? such
that 7 isa set of consecutive natural numbers, 0 € I and
(Vie D[i > 0= (3j € D[j <iandf(i)and f(j) are
adjacent ].

A shape describes thus a connected region of the plane.
The size of a shape f is the cardindity of its range, i.e.
the number of positionsit contains, regardless of how many
timesthey are visited. If wefill in each position of a shape
with tiles from a given tile system 7', we obtain the notion
of a’T-supertile.

Definition 4.2 For all tilesystems 7", a’I’-supertileisa pair
(f,g) where f isashapeand g : range( f) — T isafunc-
tion such that (Vi € dom(f))[i > 0 = (35 € dom(f))[j <
i and f(¢) abuts f(j) on the north (east, south, west) and
g(f(%)) sticks on the north (east, south, west) to g( f(j))].

The size of a T-supertile (f, ¢) is the size of its corre-
sponding shape f. Two T-supertiles(f, ¢) and (f*, ¢') are
equivalent iff thereexists ¢, j € Z such that for al (z,y) €
72, (x,y) € range(f) iff (x +4,y+ j) € range(f’) and for
al (z,y) € range(f), g(x,y) = ¢'(¢+4,y+74). Thatis the
T-supertile(f', ¢') isequivalent to the T-supertile (f, g) if
and only if (', ¢’) can be obtained by translating (f, ¢) on
the plane.

Notethat the definitionsof shape and supertilemay differ
in other papers. The ideas are similar, but the details may
not bethe same. The problem stated at the beginning of this
section is settled by the following result.

Theorem 4.1 The following sets are undecidable:

S; = {T|T isatile system and there exists an infinite
T-supertile}, and

Sy = {T|T is atile system and there exists infinitely
many non-equivalent finite 7-supertiles} .

Proof. Itiseasily shown that setsS; and S, areidentical to
the set {T'|T isatile system and there exists an infinite 7'-
ribbon }. Hence Theorem 4.1 followsfrom Theorem 3.3. O

5 Conclusion

In this paper we prove the undecidability of the problem
of distinguishing tile systems that allow infinite ribbons to
self-assembl e from those that do not.

Thisresult settlesan open problem formerly known asthe
“unlimited infinite snake problem”.

Weal so provethe undecidability of the problemof distin-
guishingtilesystemsthat allow the self-assembly of infinite
supertilesfrom those that do not.

We introduce a“motif” construction that allows onetile
system to simulate another by using geometry to represent
glues. This construction may be useful in other contexts.
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