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Abstract

Self-assembly, the process by which objects au-
tonomously come together to form complex structures,
is omnipresent in the physical world. A systematic study of
self-assembly as a mathematical process has been initiated.
The individual components are modelled as square tiles
on the infinite two-dimensional plane. Each side of a tile
is covered by a specific “glue”, and two adjacent tiles
will stick iff they have matching glues on their abutting
edges. Tiles that stick to each other may form various
two-dimensional “structures” such as squares, rectangles,
or may cover the entire plane. In this paper we focus on a
special type of structure, called ribbon: A non-self-crossing
sequence of tiles on the plane, in which successive tiles are
adjacent along an edge, and abutting edges of consecutive
tiles have matching glues. We prove that it is undecidable
whether an arbitrary finite set of tiles with glues (infinite
supply of each tile type available) can be used to assemble
an infinite ribbon. The proof is based on a construction,
due to Robinson, of a special set of tiles that allow only
aperiodic tilings of the plane. This construction is used
to create a special set of directed tiles (tiles with arrows
painted on the top) with the “strong plane-filling property”
- a variation of the “plane-filling property” previously
defined by J. Kari. A construction of “sandwich” tiles is
then used in conjunction with this special tile set, to reduce
the well-known undecidable Tiling Problem to the problem
of the existence of an infinite directed zipper (a special
kind of ribbon). A “motif” construction is then introduced
that allows one tile system to simulate another by using
geometry to represent glues. Using motifs, the infinite
directed zipper problem is reduced to the infinite ribbon
problem, proving the latter undecidable.

The result settles an open problem formerly known as the

“unlimited infinite snake problem”. Moreover, an immedi-
ate consequence is the undecidability of the existence of ar-
bitrarily large structures self-assembled using tiles from a
given tile set.

1 Introduction

Self-assembly, the process by which objects au-
tonomously come together to form complex structures, is
omnipresent in the physical world. Atoms bind to each
other by chemical bonds to form molecules, molecules may
form crystals or macromolecules, cells interact to form
biological organisms. Recently it has been suggested that
complex self-assembly processes will ultimately be used in
circuit fabrication, nano-robotics, DNA computation and
amorphous computing. Indeed, in electronics, engineering,
medicine, material science, manufacturing and other disci-
plines, there is a continuous drive toward miniaturization.
Unfortunately, current “top-down” techniques such as
lithography may not be capable of efficiently creating
structures with features the size of molecules or atoms.
Self-assembly provides a “bottom-up” approach by which
such fine structures might be created.

Experimental research on self-assembly includes simula-
tion of one-dimensional cellular automata by using macro-
scopic plastic tiles that assemble at an oil/water inter-
face [25], studies of self-directed growth of hybrid organic
molecules on a silicon substrate [18], self-assembly of regu-
lar lipid hollow icosahedra [8], self-assembly of patterns of
lead on a copper surface as templates for fabricating nanos-
tructures [22], formation of electrical networks by self-
assembly of small plastic and metal objects [10], [33], self-
assembly of molecular machines [9], and the constructionby
self-assembly of the world’s first molecular-thickness tran-



sistor [28].

Investigations into DNA Computing [2] and amorphous
computing [1] have pointed out a strong connection between
self-assembly and computation. While [30], [21], [23], [32]
have shown the potential of DNA self-assembly for com-
putation, [31] has experimentally demonstrated the self-
assembly of periodic two-dimensional arrays from DNA
“tiles”, in which “binding” is regulated by the “sticky” ends
of the DNA tiles. Moreover [19] has demonstrated the ex-
ecution of logical operations (cumulative XOR) by self-
assembly of DNA triple cross-over molecules.

A systematic study of self-assembly as a computational
process has been initiated in [3]. The individual compo-
nents are therein modelled as square tiles on the infinite two-
dimensional plane. The tiles cannot be rotated. Each side
of a tile is covered by a specific “glue” and two adjacent
tiles will stick iff they have matching glues on their abut-
ting edges. As such, tiles have been previously studied in
the context of classic questions about tilings of the plane
[29]. The Tiling Problem, for example (proved undecid-
able in [7], [24]), asks whether a given set of tiles (supply
of each tile type unlimited) can be used to correctly tile the
entire plane. However, self-assembly of tiles into required
shapes poses new types of questions. What is the minimal
number of tiles required for the self-assembly of a desired
shape and no other objects [5]? What is the running time of
such a self-assembly [5], [6]? Do the results still hold if one
generalizes the model by making the “sticking” reversible,
or by defining different bond strengths and requiring more
than one bond for sticking to occur [27], [6], [4], [5]? Do
reversible self-assemblies achieve equilibrium [4]? What is
the optimal initial concentration of tile types that guarantees
the fastest assembly of a required shape [5]?

One of the interesting problems of self-assembly is
whether or not a given set of tiles allows uncontrollable
growth, that is, whether arbitrarily large structures can be
produced. It turns out that this question is equivalent to ask-
ing whether or not, given a set of tiles, there exists an in-
finite ribbon that can be formed with tiles from this set. A
ribbon is a non-self-crossing sequence of tiles on the plane,
in which successive tiles are adjacent along an edge, and
abutting edges of consecutive tiles have matching glues. If
a given “seed” tile is specified, the problem of existence of
an infinite ribbon starting at that tile has been proved un-
decidable [12], [11], [13]. However, when no such seed is
specified, existing proof techniques failed to produce an an-
swer and the problem was declared open in [13]. The un-
seeded problem is even more relevant given that, in physi-
cal simulationsof self-assembly, the growth mechanism was
deemed incompatible with computations that use a chosen
input [25]. Here we prove that the unseeded problem is
also undecidable. This result settles the decade-old problem
known hitherto as the “unlimited infinite snake problem”,

[13].
The paper is organized as follows. Section 2 introduces

the notions of tile, glue, tile system, sticking, ribbon, zip-
per, valid tiling of the plane, directed tiles. In particular, a
zipper is a ribbon with the additional requirement that even
non-consecutive tiles that touch must have matching glues
at their abutting edges.

Section 3 starts with defining a directed tile system with
the strong plane-filling property: in such a system, any in-
finite directed zipper is forced to follow a specific plane-
filling self-similar path and, moreover, an infinite directed
zipper is always guaranteed to exists. The construction of
a directed tile system with the above property uses a 3x3
block-construction starting from directed tiles defined in
[16], [15] which, in turn, resemble tiles devised by Robinson
in [24] to only produce aperiodic tilings of the plane. These
tiles are augmented in [15], [16] with directions that force
any directed tiled path to form a self-similar plane-filling
Hilbert curve that recursively fills arbitrarily large squares
by filling each of their quadrants. The original construction
used the condition that no glue mismatch be present in the3�3 neighbourhoodof any tile on the path, to force the path
to follow the desired curve. Here, the additional 3�3 block
construction is needed to ensure that the weaker condition
of no glue mismatch between any two tiles on the directed
tiled path is enough to force its course.

Section 3 then proves the undecidability of the existence
of an infinite directed zipper by reducing the Tiling Problem
to it. The reduction is based on a construction of sandwich
tiles, that have directed tiles from the directed tile system
with the strong plane-filling property on top and undirected
tiles from a given tile system on the bottom.

The next result of the section proves the undecidability
of the existence of an infinite ribbon by reducing the un-
decidable infinite directed-zipper problem to it. The proof
uses a “ribbon-motif” construction that simulates each di-
rected zipper tile by a ribbon of undirected tiles following
its contours, and uses geometry (bump and dents) to simu-
late zipper-tile glues.

Section 4 and Section 5 point to the implications of the
undecidability of existence of infinite ribbons for the prob-
lem of self-assembly of arbitrarily large supertiles, and sum-
marize our results.

2 Notation and definitions

A tile is an oriented unit square. The north, east, south
and west edges of the tile are each labelled with a symbol
called a glue from a finite alphabet X. Tiles can be placed
on the plane but not rotated. The positions of the tiles on the
plane are indexed byZ2, the set of pairs of integers.

Formally, a tile t is a quadruple t = (tN ; tE; tS ; tW ) 2X4 where X is a finite set. The components tN ; tE ; tS; tW



will be called the glues on the north, east, south, and west
edges of the tile, respectively. A tile system T is a finite
subset of X4. For all tiles t = (tN ; tE ; tS; tW ) and t0 =(t0N ; t0E ; t0S; t0W ), t sticks on the north to t0 iff tN = t0S .
Sticking on the east, south, and west is defined similarly.

The directions D = fN;E; S;Wg are functions fromZ2 toZ2: N (x; y) = (x; y + 1), E(x; y) = (x + 1; y),S(x; y) = (x; y � 1), W (x; y) = (x � 1; y). We say that
the positions (x; y) and (x0; y0) are adjacent iff (x0; y0) 2fN (x; y); E(x; y); S(x; y);W (x; y)g. In addition, (x; y)
abuts (x0; y0) on the north iff (x0; y0) = N (x; y), and simi-
larly for the other directions.

Given a tile system T , a T -tiling of the plane is a total
function f : Z2 �! T . The tiling f is valid at position(x; y) iff f(x; y) sticks on the north to f(N (x; y)), f(x; y)
sticks on the east to f(E(x; y)), f(x; y) sticks on the south
to f(S(x; y)), and f(x; y) sticks on the west to f(W (x; y)).
That is to say, f is valid at (x; y) iff the tile at position (x; y)
sticks on the appropriate sides to all the tiles that are at po-
sitions adjacent to it. The tiling is valid iff it is valid at ev-
ery position (x; y) 2 Z2. The well-known Tiling Problem
posed by Wang asks: Given a tile system T , does there ex-
ists a valid T -tiling of the plane? The Tiling Problem has
been first proven undecidable by Berger [7], and the result
improved by Robinson [24]. One can generalize the notion
of T -tiling of the entire plane by defining a partial T -tiling
as a partial function g :Z2 �! T . A partial tiling g is valid
on a regionR � dom(g) iff, for all (x1; y1); (x2; y2) 2 R, if(x1; y1) abuts (x2; y2) on the north (east, south, west), theng(x1; y1) sticks to g(x2; y2) on the north (east, south, west).
The partial tiling g is called valid iff it is valid on the entire
dom(g).

A path is a function P : I �! Z2 where I is a set of
consecutive integers and 8(i; i+ 1 2 I), P (i) and P (i+1)
are adjacent. That is, a path is a sequence of adjacent posi-
tions on the plane. For all i 2 I, we denote P (i) as (xi; yi).
We say that (x; y) is on P iff (x; y) 2 range(P ). For all tile
systems T , a T -tiled path is a pair (P; r) where P is a path
and r is a function r : range(P ) �! T .

A T -tiled path (P; r) is a T -ribbon iff
(a) P is one-to-one and
(b) 8(i; i + 1) 2 dom(P ), if (xi+1; yi+1) abuts (xi; yi)

on the north (south, east, west) then r(xi+1; yi+1) sticks tor(xi; yi) on the north (south, east, west).
Informally, a tiled path is a ribbon iff it does not cross it-

self and the glue between tiles at consecutive positionsalong
the path match.

A T -ribbon (P; r) is a T -zipper iff for all (x; y); (x0; y0)
on P if (x0; y0) abuts (x; y) on the north (south, east, west)
then r(x0; y0) sticks to r(x; y) on the north (south, east,
west). Note that the notion of a zipper is more restrictive
than the notion of a ribbon in that a zipper requires all of its
tiles (consecutive or not) in adjacent positions to stick.

A directed tile system is a pair (T; d) where T is a tile
system and d : T �! fN;E; S;Wg is a function from the
tile system to the direction functions. A directed tile system
can be thought of as a tile system in which each tile has an
arrow painted on it pointing north, east, south, or west.

A (T; d)-directed tiled path is a pair (P; r), where (P; r)
is a T -tiled path and 8(i; i + 1 2 dom(P ))[(xi+1; yi+1) =d(r(xi; yi))(xi; yi)]. A directed tiled path is a tiled path in
which each tile points to its successor on the path. If (P; r) is
a (T; d)-directed tiled path and (P; r) is a T -ribbon (zipper)
then (P; r) is a (T; d)-directed ribbon (zipper).

A path, (directed) tiled path, (directed) ribbon, (directed)
zipper is finite, semi-infinite, infinite, iff the domain of the
associated path is finite, has a least or greatest element and
is infinite, or isZrespectively.

3 Undecidability of existence of infinite rib-
bons

To prove the undecidability of existence of infinite rib-
bons, we shall first prove the undecidability of existence of
infinite directed zippers. Afterwards, a “ribbon-motif” con-
struction will be employed to prove the result for ribbons:
the construction simulates a directed zipper by a ribbon-
motif of smaller tiles that goes around the contours of the
zipper tiles, and uses geometry to simulate zipper-tile glues.

In order to prove the undecidability of existence of infi-
nite directed zippers, we shall use the undecidability of the
Tiling Problem in conjunction with a sandwich construction
that makes use of the existence of a directed tile system with
the so-called strong plane-filling property.

Definition 3.1 A directed tile system (T; d) has the strong
plane-filling property iff:

(a) There exists an infinite (T; d)-directed zipper and
(b) For all infinite (T; d)-directed zippers (P; r),8n9(x; y) such that (x + i; y + j) is on P fori = 0; 1; 2; : : : ; n and j = 0; 1; 2; : : : ; n.

Definition 3.1 states that in a directed tile system with
the strong plane-filling property any infinite directed zip-
per is forced to be plane-filling (by filling arbitrarily large
squares) and, moreover, that such an infinite directed zip-
per always exists. An important element of our subsequent
proofs will be Theorem 3.1, namely the construction of a di-
rected tile system that satisfies the strong plane-filling prop-
erty of Definition 3.1. In fact, our directed tiles satisfy an
even stronger requirement than (b): any infinite directed
tiled path is either plane-filling or it has a glue mismatch
between two of its tiles. In particular, using our tiles, an
infinite directed tiled path may not even form a loop with-
out encountering a glue mismatch along the way. Conse-
quently, every non-plane-filling infinite directed tiled path



must necessarily contain two neighbouring tiles with a glue
mismatch. The constructed tiles satisfy therefore a stronger
version of Definition 3.1, satisfying thus a stronger property
than the original plane-filling property defined in [15, 16].

In the original version, any infinite directed tiled path was
forced to be plane-filling unless there was a mismatch of
glues inside the 3 � 3 neighbourhood of some tile of the
path. In [16] directed tiles with this weaker plane-filling
property were explicitelyconstructed by augmenting Robin-
son’s aperiodic tiles [24] withdirections. With these tiles, all
directed tiled paths consisting of tiles without errors in their3�3 neighbourhoodformed self-similar plane-fillingcurves
of the kind used by Hilbert [14] to show that the unit square
is a continuous image of the unit segment. The constructed
tiles filled arbitrarily large squares recursively, by first fill-
ing the individual quadrants of a square. The process was
guided by the direction associated to each tile, which forced
the construction to proceed along the self-similar Hilbert
curve that traversed each quadrant of a square and linked the
quadrants to each other.

In the present application we need the stronger variant
of the plane-filling property introduced in this paper. In
our case the infinite directed tiled path must be forced to be
plane-filling even under the weak assumption that there is
no glue mismatch between any two tiles belonging to it. It
turns out that such a directed tile system is obtained by tak-
ing 3�3 blocks of the tiles in [16]. For this particular set of
tiles, our 3� 3 block-construction ensures that the weak re-
quirement of absence of glue mismatches between any two
tiles belonging to the directed tiled path is sufficient to de-
termine its uniqueness. Namely, we can prove that the con-
structed directed tile system has the property that, starting
with any arbitrary tile, the only way to build an infinite error-
free directed zipper is by forming a Hilbert curve that covers
arbitrarily large squares.

The exact construction is rather complex and is not in-
cluded here. We have:

Theorem 3.1 There exists a directed tile system (T0; d0)
with the strong plane-filling property.

We shall now use Theorem 3.1 to prove the undecidabil-
ity of the existence of an infinite directed zipper.

Theorem 3.2 The set f(T; d)j(T; d) is a directed tile system
and there exists an infinite (T; d)-directed zipper g is unde-
cidable.

Proof. Reduce the undecidable Tiling Problem to our prob-
lem.

By Theorem 3.1 there exists a directed tile system(T0; d0) with the strong plane-filling property.
Let T1 be a tile system. Consider the following “sand-

wich tiles”, each consisting of a tile from T0 placed on top

a

b

Figure 1. A sandwich tile �(a; b) consists of a
directed tile a 2 T0 placed on top of a tile b 2T1. The direction of �(a; b) is d(�(a; b)) = d0(a),
the direction of its top tile.

of a tile from T1. That is, create a new directed tile system(T; d) of sandwich tiles such that T = f�(a; b)ja 2 T0 andb 2 T1g where for all a = (aN ; aE ; aS; aW ) 2 T0 andb = (bN ; bE ; bS; bW ) 2 T1, the sandwich tile �(a; b) =((aN ; bN); (aE ; bE); (aS ; bS); (aW ; bW )) and the direction
of the sandwich tile is d(�(a; b)) = d0(a) (see Figure 1).

Hence, a sandwich tile �(a; b) sticks on the north (east,
south, west) to �(a0; b0) iff a sticks on the north (east, south,
west) to a0 and b sticks on the north (east, south, west) to b0.

We will show now that there exists a validT1-tilingof the
plane iff there exists an infinite (T; d)-directed zipper.

“)” Assume that there exists a valid T1-tiling of the
plane f :Z2 �! T1. Consider an infinite (T0; d0)-directed
zipper (P; r) (such exists, since (T0; d0) has the strong
plane-filling property). Consider the T -tiled path (P; q) of
sandwich tiles such that, for all (x; y) on P , q(x; y) =�(r(x; y); f(x; y)). Informally, the directed tiled path of
sandwich tiles consists of the infinite (T0; d0)-directed zip-
per on its top, and the corresponding partial valid T1-tilingf jrange(P ) on the bottom. It is clear that in fact (P; q) is an
infinite (T; d)-directed zipper of sandwich tiles.

“(” Assume that there exists an infinite (T; d)-directed
zipper (P; q) of sandwich tiles. Then, let (P; r) be its top
layer, i.e., for all (x; y) on P , r(x; y) = a iff q(x; y) =�(a; b) for some b 2 T1. Then clearly, (P; r) is an in-
finite (T0; d0)-directed zipper. Hence, as (T0; d0) has the
strong plane-filling property, P contains “arbitrarily large
squares”: 8n9(x; y) such that (x + i; y + j) is on P fori = 0; 1; 2; : : : ; n and j = 0; 1; 2; : : :; n. Let (P; z) be the
bottom layer of (P; q), i.e. the T1-tiled path such that for
all (x; y) on P , z(x; y) = b iff q(x; y) = �(a; b). Then
clearly, (P; z) is in fact an infinite T1-zipper. It follows that
range(P ) = dom(z) contains arbitrarily large squares and
moreover, for all n, z : range(P ) �! T1 is a partial tiling
valid on a square of size n. It now follows from the König
infinity lemma [17] that there exists a valid T1-tiling of the
plane.2



Figure 2. A ribbon motif with input tile on the
west and output tile on the north.

Having proved the undecidability of existence of an infi-
nite directed zipper, we shall use this result to show that the
existence of an infinite ribbon is also undecidable.

Theorem 3.3 The set fT jT is a tile system and there exists
an infinite T -ribbon g is undecidable.

Proof. Reduce the set of Theorem 3.2 to this set.
Given a directed tile system (T; d), we will construct

a tile system T 0 such that there exists an infinite (T; d)-
directed zipper iff there exists an infinite T 0-ribbon. Re-
call that a zipper differs from a ribbon in that in a ribbon
only consecutive tiles are required to have matching glues
on abutting edges, while on a zipper even non-consecutive
neighbouring tiles have to have matching glues on their
abutting edges.

The construction is as follows. For each directed tile t 2T , construct three T 0-motifs. A motif is a finite T 0-ribbon(P; r) of special form. We construct these ribbon motifs as
follows (see Figure 2).

Each motif is essentially a tiled path that outlines the con-
tours of a square. There are dents and bumps on the north,
east, south and west sides of the motif. In addition, if (P; r)
is a motif, then the first position on P is midway along one
side of the motif. This side is called the input side of the
motif and the tile at the first position is called the input tile
of the motif. The last position on P is midway along a side
of the motif different than the input side. This side is called
the output side of the motif and the tile at the last position is
called the output tile of the motif.

Figure 3. The two remaining variant motifs
corresponding to a directed zipper-tile with
direction north (the first one is depicted in
Figure 2). The bumps and dents are omitted
from the variant motifs for clarity.



Bump

Dent

Figure 4. The bump-and-dent pair that simu-
late a glue. Each glue is assigned a unique
position on the side of a motif. If the glues on
two directed zipper tiles situated at adjacent
positions match, then the bump on the first
motif will be placed exactly at the necessarry
position to fit in the dent of the second motif.

Given a directed tile t 2 T , we construct the three possi-
ble motifs with output side d(t). We call these three motifs
the “variants” of t (see Figure 3). On each variant, we put a
bump on the east (south) side, to encode the glue on the east
(south) side of t. We also put a dent on the west (north) side,
to encode the glue on the west (north) side of t. The dents
and bumps are designed so that if, for example, t1 sticks on
the north to t2, then the dents on the north of t1 variant mo-
tifs fit the bumps on the south of t2 variants (see Figure 4). If
however, t1 does not stick on the north to t2, then the north
sides of t1 variant motifs will overlap the bumps on the south
of t2 variants. Since overlaps are not allowed in ribbons, ift1 does not stick on the north to t2, no T 0-ribbon can have at2 variant motif directly north of a t1 variant motif.

The glues on tiles in T 0 are chosen so that each tile can
occur in exactly one variant motif, and in each variant mo-
tif it occurs exactly once. To this aim, the two edges of each
ribbon tile connecting it with the preceding respectively suc-
ceeding tile on a variant motif are labelled so that this is
the only sticking that can form along those edges. The only
exception to this rule are the input (output) tiles of motifs,
which have the edges connecting them to the preceding (suc-
ceeding) tiles labelled differently, as detailed below.

So far, the bumps and dents were used to simulate the
glues of zipper-tiles. We now simulate the direction of
a zipper-tile by incorporating it in the glues of the input
and output tiles of its variant motifs. We namely use four
new glues, West-to-East, East-to-West, North-to-South and
South-to-North as follows. If the direction of a directed
zipper-tile t1 is north, i.e. d(t1) = N , then:

(a) the output ribbon-tiles of all three variant motifs of t1
will have their north edge labelled South-to-North, and

(b) the input tile of the variant motif of t1 with a west
(east, south) input side will have its west (east, south) edge
labelled West-to-East (East-to-West, South-to-North).

We label in a similar way the appropriate edges of the
input and output tiles of other motifs, namely those edges
that are meant to connect the motifs to each other. This la-
belling ensures that the variant motifs will be connected to
each other in the proper order dictated by the direction of the
originating directed zipper-tiles.

Lastly, we want to ensure that only motifs of the kind de-
scribed above can form, and that motifs can connect to each
other only through their input and output tiles. To this aim,
we have two new different “null” glues: null(1) and null(2).
We label, for all the above constructed ribbon tiles, the so-
far-unlabelled north and west edges with null(1) and the un-
labelled east and south edges with null(2). Because null(1)
only matches null(1), and null(1) is only used on the west
and north edges, the edges of tiles labelled with these glues
will not stick to any other tiles along those edges. The same
is true for null(2). These “non-stick” glues ensure that the
ribbon will only follow the intended motif and will not fill
it in, or stick to anything outside it, except at the input and
output tiles.

To summarize, given the directed tile system (T; d) we
can construct the tile system T 0 consisting of the ribbon tiles
used in all variant motifs of tiles in T , as described above.

Assume that there exists an infinite directed (T; d)-zipper(P; r). One can easily construct an infinite T 0-ribbon(P 0; r0). The idea is that, for each position (xi; yi) onP the tile r(xi; yi) is replaced by one of its variant mo-
tifs. The variant chosen is one with input side opposited(r(xi�1; yi�1)).

Conversely, assume that there exists an infinite T 0-
ribbon, (P 0; r0). It is clear from our choice of ribbon tiles
and glues that (P 0; r0) must consist of an infinite sequence
of motifs. Hence we can construct an infinite (T; d)-directed
zipper by replacing each motif with the tile t of which it is a
variant. 2

Theorem 3.3 proves the undecidability of existence of an
infinite ribbon. This settles the open problem [13], stating:
“Problem 4.1. Given a tiling system T , is there an infiniteT -snake within the infinite grid G =Z�Z?”

In the terminology of [13], a tiling system T is exactly as
defined in Section 2, a finite set of tiles, i.e. of squares with
coloured edges that cannot be rotated and with infinitely
many copies of each tile available; The grid G is the inte-
ger grid of positions in the plane; An infinite T -snake is a
sequence of tiles on the plane in which successive tiles are
adjacent along an edge and touching edges have the same
colour, i.e., infinite T -snakes are (possibly self-crossing) 2-
way infinite ribbons where identical tiles must be present at
the crossing sites. In general, an infinite snake problem asks,
given a tiling system T , and some portion P of the plane,
whether there is an infinite T -snake that lies entirely withinP . [13] proves that, given T and a strip of width k 2 N ,
the existence of an infinite T -snake that lies entirely within



the strip is decidable. Given a tile system T , and a specific
tile t0 2 T , the problem of whether there exists an infiniteT -snake that contains t0 is proved undecidable in [13] using
methods in [12] (the case of a 1-way infinite snake starting
at t0 was proven undecidable in [11]). If the special “seed”
tile is not specified, like in Problem 4.1, [13] conjectures the
problem undecidable but states that “[...] it seems that this
would be difficult to prove. We have not been able to adjust
the proof techniques of other undecidability results for this
purpose”.

Theorem 3.3, by showing the undecidability of existence
of infinite non-self-crossing snakes, proves Problem 4.1 un-
decidable.

4 Undecidability of self-assembly of arbitrar-
ily large supertiles

Let us return to the discussion of self-assembly. Super-
tiles are constructed by an incremental process starting from
a single tile and proceeding by addition of single tiles that
“stick” to the hitherto built structure. The problem we are
addressing is whether or not, given a tile system, an infinite
supertile can self-assemble with tiles from that system. To
formalize our notions,

Definition 4.1 A shape is a function f : I �! Z2 such
that I is a set of consecutive natural numbers, 0 2 I and(8i 2 I)[i > 0 ) (9j 2 I)[j < i and f(i) and f(j) are
adjacent ].

A shape describes thus a connected region of the plane.
The size of a shape f is the cardinality of its range, i.e.
the number of positions it contains, regardless of how many
times they are visited. If we fill in each position of a shape
with tiles from a given tile system T , we obtain the notion
of a T -supertile.

Definition 4.2 For all tile systems T , a T -supertile is a pair(f; g) where f is a shape and g : range(f) �! T is a func-
tion such that (8i 2 dom(f))[i > 0) (9j 2 dom(f))[j <i and f(i) abuts f(j) on the north (east, south, west) andg(f(i)) sticks on the north (east, south, west) to g(f(j))].

The size of a T -supertile (f; g) is the size of its corre-
sponding shape f . Two T -supertiles (f; g) and (f 0; g0) are
equivalent iff there exists i; j 2Zsuch that for all (x; y) 2Z2, (x; y) 2 range(f) iff (x+ i; y+ j) 2 range(f 0) and for
all (x; y) 2 range(f), g(x; y) = g0(x+i; y+j). That is, theT -supertile (f 0; g0) is equivalent to the T -supertile (f; g) if
and only if (f 0; g0) can be obtained by translating (f; g) on
the plane.

Note that the definitions of shape and supertile may differ
in other papers. The ideas are similar, but the details may
not be the same. The problem stated at the beginning of this
section is settled by the following result.

Theorem 4.1 The following sets are undecidable:S1 = fT jT is a tile system and there exists an infiniteT -supertileg, andS2 = fT jT is a tile system and there exists infinitely
many non-equivalent finite T -supertilesg:
Proof. It is easily shown that sets S1 and S2 are identical to
the set fT jT is a tile system and there exists an infinite T -
ribbon g. Hence Theorem 4.1 follows from Theorem 3.3. 2
5 Conclusion

In this paper we prove the undecidability of the problem
of distinguishing tile systems that allow infinite ribbons to
self-assemble from those that do not.

This result settles an open problem formerly known as the
“unlimited infinite snake problem”.

We also prove the undecidabilityof the problem of distin-
guishing tile systems that allow the self-assembly of infinite
supertiles from those that do not.

We introduce a “motif” construction that allows one tile
system to simulate another by using geometry to represent
glues. This construction may be useful in other contexts.
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